Fiber to the X

FTTX or fiber in the loop is a generic term for any broadband network architecture using optical fiber to provide all or part of the local loop used for last mile telecommunications.
Fiber to the x-BP
Table of Contents

Fiber to the x (FTTX) or fiber in the loop is a generic term for any broadband network architecture.

It uses optical fiber to provide all or part of the local loop for last-mile telecommunications.

Fiber optic cables can carry much more data than copper cables, especially over long distances, so they replaced copper telephone networks built in the 20th century.

FTTX is a generalization for several configurations of fiber deployment. So we can arrange it into two groups:

FTTP/FTTH/FTTB (Fiber laid all the way to the premises/home/building)

FTTC/N (fiber laid to the cabinet/node, with copper wires completing the connection).


Residential areas call for a trade-off between cost and capacity.

The closer the fiber head, the higher the cost of construction and the higher the channel capacity.

next-generation access

Fiber to the x is the key method to drive next-generation access (NGA),

which describes a significant upgrade to the Broadband available by making a step change in speed and quality of the service.

This is typically thought of as asymmetrical with a download speed of 24 Mbit/s plus and a fast upload speed.

The Definition of UK Superfast Next Generation Broadband OFCOM have defined NGA as

in “Ofcom’s March 2010 ‘Review of the wholesale local access market

“Super-fast broadband is generally taken to mean broadband products that provide a maximum download speed that is greater than 24 Mbit/s.

Most people agree that the maximum speed is at this threshold.

Which can be supported on networks of the current generation (based on copper).

Cable television providers use a comparable network known as a hybrid fiber-coaxial (HFC) network.

Although similar advanced services are offered by the HFC networks, it is typically not synonymous with “fiber in the loop.”.

Alternatives to dial-up Internet access include fixed wireless and mobile wireless technologies like Wi-Fi, WiMAX, and 3GPP Long Term Evolution (LTE).


The telecommunications industry differentiates between several distinct FTTX configurations. The terms in most widespread use today are:

FTTP (fiber-to-the-premises): This term is used either as a blanket term for both FTTH and FTTB, or where the fiber network includes both homes and small businesses

FTTH (fiber-to-the-home): Fiber reaches the boundary of the living space, such as a box on the outside wall of a home. According to the different devices in the network structure, we can divide FTTH networks into passive optical network (PON, passive optical network) and active optical network (AON, active optical network).

FTTB (fiber-to-the-building, -business, or -basement): Fiber reaches the boundary of the building, such as the basement in a multi-dwelling unit, with the final connection to the individual living space being made via alternative means, similar to the curb or pole technologies

FTTD can mean two different things:

  • (fiber-to-the-desktop or -desk): In an office, fiber connection is installed from the main computer room to a desk or fiber media converter near the user’s desk
  • (fiber-to-the-door): Fiber reaches outside the flat

FTTR can mean two different things:

  • (fiber-to-the-radio): Fiber runs to the transceivers of base stations
  • (fiber-to-the-router): Fiber connection is installed from the router to the ISP’s fiber network

FTTO (fiber-to-the-office): Fiber connection is installed from the main computer room/core switch to a special mini-switch (called FTTO Switch) located at the user’s workstation or service points. This mini-switch provides Ethernet services to end user devices via standard twisted pair patch cords. The switches are located decentrally all over the building, but managed from one central point

FTTF can mean five different things:

  • (fiber-to-the-factory): fiber runs to factory buildings
  • (fiber-to-the-farm): fiber runs to agricultural farms
  • (fiber-to-the-feeder): a synonym of FTTN
  • (fiber-to-the-floor): fiber reaches a junction box at a floor of a building
  • (fiber-to-the-frontage): This is very similar to FTTB. In a fiber to the front yard scenario, each fiber node serves a single subscriber. This allows for multi-gigabit speeds using XG-fast technology. The fiber node may be reverse-powered by the subscriber modem

FTTM can mean four different things:

  • (fiber-to-the-machine): In a factory, fiber runs to machines
  • (fiber-to-the-mast): Fiber runs to wireless masts
  • (fiber-to-the-mobile): Fiber runs to base stations
  • (fiber-to-the-multi-dwelling-unit): FTTP to apartment buildings

FTTT can mean two different things:

  • (fiber-to-the-terminal): In an office, fiber runs to desktop equipment
  • (fiber-to-the-tower): Fiber reaches base stations

FTTW (fiber-to-the-wall or -workgroup): In an office, fiber runs to small switches near a group of users

FTTA can mean two different things:

  • (fiber-to-the-amplifier): Fiber runs to street cabinets
  • (fiber-to-the-antenna): Fiber runs up antenna towers

FTTCS (fiber-to-the-cell-site): fiber reaches the base station site

FTTE / FTTZ (fiber-to-the-telecom-enclosure or fiber-to-the-zone): is a form of structured cabling typically used in enterprise local area networks, where fiber is used to link the main computer equipment room to an enclosure close to the desk or workstation. FTTE and FTTZ are not considered part of the FTTX group of technologies, despite the similarity in name.

FTTdp (Fiber To The Distribution Point): This is very similar to FTTC / FTTN but is one-step closer again moving the end of the fiber to within meters of the boundary of the customers premises in last junction possible junction box known as the “distribution point” this allows for near-gigabit speeds

FTTL (fiber-to-the-loop): general term

FTTN / FTTLA (fiber-to-the-node, -neighborhood, or -last-amplifier): Fiber is terminated in a street cabinet, possibly miles away from the customer premises, with the final connections being copper. FTTN is often an interim step toward full FTTH (fiber-to-the-home) and is typically used to deliver ‘advanced’ triple-play telecommunications services

FTTC / FTTK (fiber-to-the-curb/kerb, -closet, or -cabinet): This is very similar to FTTN, but the street cabinet or pole is closer to the user’s premises, typically within 1,000 feet (300 m), within range for high-bandwidth copper technologies such as wired ethernet or IEEE 1901 power line networking and wireless Wi-Fi technology. FTTC is occasionally ambiguously called FTTP (fiber-to-the-pole), leading to confusion with the distinct fiber-to-the-premises system. Typically providing up to 100 Mbit/s

FTTS can mean three different things:

  • (fiber-to-the-screen or -seat): On an airplane, fiber reaches the IFE screens
  • (fiber-to-the-street): The customer is connected using copper to the fiber passing near the building, up to 200 metres (660 ft) away. This is a compromise between FTTB and FTTC. Typically providing up to 500 Mbit/s
  • (fiber-to-the-subscriber): This is a synonym for FTTP

To promote consistency, especially when comparing FTTH penetration rates between countries, the three FTTH Councils of Europe, North America, and Asia-Pacific agreed upon definitions for FTTH and FTTB in 2006, with an update in 2009, 2011 and another in 2015. The FTTH Councils do not have formal definitions for FTTC and FTTN.

ftth fttd fttb fttc


Fiber optic cables can carry data at high speeds over long distances, whereas copper cables used in traditional telephone lines and ADSL cannot. For example, the common form of Gigabit Ethernet (1Gbit/s) runs over relatively economical category 5e, category 6 or augmented category 6 unshielded twisted-pair copper cabling only to 100 m (330 ft).
However, 1 Gbit/s Ethernet over fiber can easily reach tens of kilometers.

Therefore, every major communications provider in the world selects FTTP to carry data over long 1 Gbit/s symmetrical connections directly to consumer homes.

FTTP configurations that bring fiber directly into the building can offer the highest speeds. Since the remaining segments can use standard Ethernet or coaxial cable.

Because the terminal equipment, not the fiber, typically sets a connection’s data rate limit, fiber is frequently referred to as being “future-proof” because equipment upgrades can significantly increase speed before upgrading the fiber itself.

Therefore, the employed fibers length and type, e. G. Multimode vs. For connections over 1 Gbit/s in the future, single-mode connections are essential.

With the rising popularity of high-definition, on-demand video streaming applications and devices such as YouTube, NetflixRoku, and Facebook LIVE, the demand for reliable bandwidth is crucial as more and more people begin to utilize these services.

FTTC (where fiber transitions to copper in a street cabinet) is generally too far from the users for standard ethernet configurations over existing copper cabling. They generally use very-high-bit-rate digital subscriber line (VDSL) at downstream rates of 80 Mbit/s, but this falls extremely quickly over a distance of 100 meters.

Fiber to the premises

Fiber to the premises (FTTP) is a form of fiber-optic communication delivery. In which an optical fiber is run in an optical distribution network from the central office all the way to the premises occupied by the subscriber. The term “FTTP” has become ambiguous and may also refer to FTTC where the fiber terminates at a utility pole without reaching the premises.

Workers pulling Fiber-optic cable underneath NYC’s streets

Fiber to the premises can be categorized according to where the optical fiber ends:

  • FTTH (fiber-to-the-home) is a form of fiber-optic communication that reaches one living or working space.The fiber extends from the central base to the subscriber’s living or working space. Once at the subscriber’s living or working space, the signal can convey throughout the space using any means. Including twisted pair, coaxial cable, wireless, power line communication, or optical fiber.
  • FTTB (fiber-to-the-building or -basement) is a form of fiber-optic communication that applies only to those properties that contain multiple living or working spaces. The optical fiber terminates before actually reaching the subscribers living or working space itself but does extend to the property containing that living or working space.

An apartment building may provide an example of the distinction between FTTH and FTTB. If a fiber is run to a panel inside each subscriber’s apartment unit, it is FTTH. If the fiber goes only as far as the apartment building’s shared electrical room (either only to the ground floor or to each floor), it is FTTB.


Fiber to the curb/cabinet/node

The inside of a fiber cabinet. The left side contains fiber, and the right side contains copper.

Fiber to the curb/cabinet (FTTC) is a telecommunications system based on fiber-optic cables run to a platform that serves several customers. Each of these customers has a connection to this platform via coaxial cable or twisted pair. The “curb” is an abstraction and can just as easily mean a pole-mounted device or communications closet or shed. Typically any system terminating fiber within 1,000 ft (300 m) of the customer premises equipment, we take as FTTC.

Fiber to the node or neighborhood (FTTN), differs from fiber to the cabinet (FTTC), is a telecommunication architecture which based on fiber-optic cables running to a cabinet serving a neighborhood.

We typically connect to this cabinet using traditional coaxial cable or twisted pair wiring. The serving area of cabinet is usually less than one mile in radius and can contain several hundred customers. (If the cabinet serves an area of fewer than 1,000 ft (300 m) in radius, the architecture is typically called FTTC/FTTK.)


FTTN allows delivery of broadband services such as high-speed internet. High-speed communications protocols such as broadband cable access (typically DOCSIS) or some form of digital subscriber line (DSL) are used between the cabinet and the customers. Data rates vary according to the exact protocol used and according to how close the customer is to the cabinet.

Unlike FTTP, FTTN often uses existing coaxial or twisted-pair infrastructure to provide last mile service and is thus less costly to deploy. In the long term, however, its bandwidth potential is limited relative to implementations that bring the fiber still closer to the subscriber.

A variant of this technique for cable television providers is used in a hybrid fiber-coaxial (HFC) system. It is sometimes given the acronym FTTLA (fiber-to-the-last-amplifier) when it replaces analog amplifiers up to the last one before the customer (or neighborhood of customers).


FTTC allows delivery of broadband services such as high-speed internet. Usually, it uses existing wire with communications protocols such as broadband cable access (typically DOCSIS) or other DSL connecting the curb/cabinet and the customers. In these protocols, the data rates vary according to the exact protocol and distance between customer and cabinet.

Where it is feasible to run new cable, both fiber and copper ethernet are capable of connecting the “curb” with a full 100Mbit/s or 1Gbit/s connection. All ethernet protocols include power over Ethernet (PoE). Most fixed wireless technologies rely on PoE, including Motorola Canopy. It has low-power radios capable of running on a 12VDC power supply fed over several hundred feet of cable.

Power line networking deployments also rely on FTTC. Using the IEEE P1901 protocol (or its predecessor HomePlug AV) existing electric service cables move up to 1Gbit/s from the curb/pole/cabinet into every AC electrical outlet in the home. Coverage is equivalent to robust Wi-Fi with the added advantage of a single cable for power and data.

By avoiding new cable and its cost and liabilities, FTTC costs less to deploy. However, it also has lower bandwidth potential than FTTP. In practice, the relative advantage of fiber depends on the bandwidth available for backhaul. Usage-based billing restrictions that prevent full use of last-mile capabilities. Customer premises equipment and maintenance restrictions, and the cost of running fiber that can vary widely with geography and building type.

FTTC In the United States and Canada

In the United States and Canada, the largest deployment of FTTC carrying out by BellSouth Telecommunications. With the acquisition of BellSouth by AT&T, deployment of FTTC will end. Future deployments will be based on either FTTN or FTTP. Existing FTTC plant may be removed and replaced with FTTP. Verizon, meanwhile, in March 2010 they were winding down Verizon FiOS expansion, concentrating on completing their network in areas that already had FiOS franchises but were not deploying to new areas, suggesting that FTTH was uneconomic beyond these areas.

Verizon also announced (at CES 2010) its entry into the smart home and power utility data management arenas. Indicating it was considering using P1901-based FTTC or some other existing-wire approach. It reaches homes and accesses additional revenues from the secure AES-128 bandwidth.

However, the largest 1Gbit/s deployment in the United States is in Chattanooga, Tennessee. Although it was conducted by power utility EPB, it was FTTH rather than FTTC, reaching every subscriber in a 600-square-mile area. Monthly pricing of $350 reflected this generally high cost of deployment. However, Chattanooga EPB has reduced the monthly pricing to $70/month.

Historical Trend

Historically, both telephone and cable companies avoided hybrid networks using several different modes of transport from their point of presence into customer premises. The increased competitive cost pressure, availability of three different existing wire solutions, smart grid deployment requirements (as in Chattanooga), and better hybrid networking tools (with major vendors like Alcatel-Lucent and Qualcomm Atheros, and Wi-Fi solutions for edge networks, IEEE 1905 and IEEE 802.21 protocol efforts and SNMP improvements) all make FTTC deployments more likely in areas uneconomic to serve with FTTP/FTTH. In effect FTTC serves as a halfway measure between fixed wireless and FTTH, with special advantages for smart appliances and electric vehicles that rely on PLC use already.


Operators around the world have been rolling out high-speed Internet access networks since the mid-2000s. Some used a network topology known as Active Ethernet Point-to-Point to deliver services from its central office directly into subscribers’ homes. Fiber termination was handled by a residential gateway provided by Advanced Digital Broadcast inside a subscriber’s home to be shared with other consumer electronics (CE) devices.

Since 2007, Italian access providers Fastweb, Telecom Italia, Vodafone, and Wind participated in an initiative called Fiber for Italy, with the aim of creating a countrywide fiber-to-the-home network in Italy. The pilot taking place in the Italian capital, Rome, has seen symmetrical bandwidth of 100 Mbit/s. Telecom Italia, which refused to take part in the Fiber for Italy initiative, has an even more ambitious plan to bring fiber-to-the-home and fiber-to-the-business to 138 cities by 2018.

By the end of December 2010, the total number of fiber-to-the-home enabled homes had passed 2.5 million, with more than 348,000 subscribers.)

In September 2010, the European Commission published a new “Recommendation for Regulated Access to NGA Networks” along with a list of measures to promote deployment of fast broadband and next generation access networks.

Portugal Telecom plans to complete its fiber-to-the-home nationwide roll out by 2020. Currently 200 mbs down, 100mbs up costs 22 euros per month.

Google Fiber provides speed of up to 1 Gbit/s.

Active Line Access is an evolving standard for the provision of services over FTTP networks in the United Kingdom proposed by the regulator Ofcom and developed by the Network Interoperability Consultative Committee.

FTTP, FTTS (subscriber)

Main article: Fiber to the premises by country

Copper telephone networks built in the 20th century are being replaced by FTTP in most countries.

FTTS (screen, seat)

Airlines have been deploying such systems on planes.

FTTS (street)

Swisscom has been deploying FTTS with aiming to provide a nationwide basic broadband coverage between 300 and 500 Mbit/s.


Operators typically provide 1 Gbit/s using the best kind of FTTP. 10Gbit/s started being offered in 2015.


A number of operators have been using this approach, even at gigabit speed.


FTTC during installation in Germany

FTTN/C is seen as an interim step towards full FTTH and in many cases triple-play services delivered using this approach to provide up to around 100 Mbit/s have been proven to grow subscriber numbers and ARPU considerably FTTN/C is currently used by a number of operators, including AT&T in the United States, Germany’s Deutsche Telekom, Greece’s OTE, Swisscom, TIM in Italy, Proximus in Belgium, nbn™ in Australia, and Canadian operators Telus, Cogeco and Bell Canada.

Optical distribution networks

Direct fiber

The simplest optical distribution network architecture is direct fiber: each fiber leaving the central office goes to exactly one customer. Such networks can provide excellent bandwidth but are more costly due to the fiber and central office machinery.

South Africa and specifically in the city of Cape Town have one of the largest Direct fiber networks in the world. Cape Town has been on the forefront of telecommunication and connectivity for many years, with a large amount of fiber in the ground and many competitive offerings. Their argument for direct fiber is that multiple operators can patch into the network easily, and troubleshooting made simple.

Direct fiber is generally favored by new entrants and competitive operators. A benefit is that no layer 2 networking technologies are excluded, whether passive optical network (PON), active optical network (AON), or other. Any form of regulatory remedy is possible using this topology.

Shared fiber

More commonly, each fiber leaving the central office is actually shared by many customers. It is not until such a fiber gets relatively close to the customers that it is split into individual customer-specific fibers. AONs and PONs both achieve this split.

Active optical network

Comparison showing how a typical AON (a star network capable of multicasting) handles downstream traffic differently from a typical PON (a star network having multiple splitters housed in the same cabinet)

AONs rely on electrically powered network equipment to distribute the signal, such as a switch or router. Normally, signals need an optical-electrical-optical transformation in the AON. Each signal leaving the central office is directed only to the customer for whom it is intended.

Incoming signals from the customers avoid colliding at the intersection because the powered equipment there provides buffering. Active Ethernet (a type of ethernet in the first mile) is a common AON, which uses optical ethernet switches to distribute the signal, incorporating the customers’ premises and the central office into a large switched ethernet network.

Such networks are identical to ethernet computer networks used in businesses and academic institutions, except that their purpose is to connect homes and buildings to a central office rather than to connect computers and printers within a location. Each switching cabinet can handle up to 1,000 customers, although 400–500 is more typical.

This neighborhood equipment performs layer 2 switching or layer 3 switching and routing, offloading full layer 3 routing to the carrier’s central office. The IEEE 802.3ah standard enables service providers to deliver up to 1000 Mbit/s, full-duplex, over one single-mode optical fiber FTTP, depending on the provider.

Passive optical network

Main article: Passive optical network

A passive optical network (PON) is a point-to-multipoint FTTP network architecture in which unpowered optical splitters are used to enable a single optical fiber to serve up to 128 customers. A PON reduces the fiber and central office equipment required compared with point-to-point architecture.

The downstream signal coming from the central office is broadcast to each customer premises sharing a fiber. Encryption is used to prevent eavesdropping. Upstream signals are combined using a multiple-access protocol, usually time division multiple access (TDMA).

Ethernet point-to-point

Point-to-Point Protocol over Ethernet (PPPoE) is a common way of delivering triple- and quad-play (voice, video, data, and mobile) services over both fiber and hybrid fiber-coaxial (HFC) networks. Active PPPoE uses dedicated fiber from an operator’s central office all the way to the subscribers’ homes, while hybrid networks (often FTTN) use it to transport data via fiber to an intermediate point to ensure sufficiently high throughput speeds over last mile copper connections.

This approach has become increasingly popular in recent years with telecoms service providers in both North America (AT&T, Telus, for example) and Europe’s Fastweb, Telecom Italia, Telekom Austria and Deutsche Telekom, for example. Google has also looked into this approach, amongst others, as a way to deliver multiple services over open-access networks in the United States.

Electrical network

Once on private property, the signal is typically converted into an electrical format.

The optical network terminal (ONT, an ITU-T term) or unit (ONU, an identical IEEE term) converts the optical signal into an electrical signal using thin film filter technology. These units require electrical power for their operation, so some providers connect them to backup batteries in case of power outages to ensure emergency access to telecommunications. The optical line terminations “range” the optical network terminals or units in order to provide TDMA time slot assignments for upstream communication.

For FTTH and for some forms of FTTB, it is common for the building’s existing ethernet, phone, and cable TV systems to connect directly to the optical network terminal or unit. If all three systems cannot directly reach the unit, it is possible to combine signals and transport them over a common medium such as Ethernet. Once closer to the end user, equipment such as a router or network interface controller can separate the signals and convert them into the appropriate protocol.

For FTTC and FTTN, the combined internet, video and telephone signal travels to the building over existing telephone or cable wiring until it reaches the end-user’s living space, where a VDSL or DOCSIS modem converts data and video signals into ethernet protocol, which is sent over the end-user’s category 5 cable.

Get A Quick Quote

We will respond within 12 hours, please pay attention to the email with the suffix “”

Also, you can go to the Contact Page, which provides a more detailed form.