Small form-factor pluggable transceiver

The small form-factor pluggable (SFP) is a compact, hot-pluggable network interface module used for both telecommunication and data communications applications.
525px-10_Gbit XFP and SFP transceivers
Table of Contents

Small form-factor pluggable (SFP) is a compact, hot-pluggable network interface module.

It is used for both telecommunication and data communications applications.

The form factor and electrical interface are specified by a multi-source agreement (MSA) under the auspices of the Small Form Factor Committee.

It is a popular industry format jointly developed and supported by many network component vendors.

The advantage of using SFPs instead of fixed interfaces (e.g. modular connectors in Ethernet switches) is that

the interface port can be equipped with any suitable type of transceiver as needed.

To connect a fiber optic cable or copper cable,

An SFP interface on networking hardware is a modular (plug-and-play) slot for a media-specific transceiver.

SFP transceivers exist supporting synchronous optical networking (SONET),

Gigabit Ethernet, Fibre Channel, PON, and other communications standards.

At introduction, typical speeds were 1 Gbit/s for Ethernet SFPs and up to 4 Gbit/s for Fibre Channel SFP modules. In 2006, SFP+ specification brought speeds up to 10 Gbit/s and the SFP28 iteration is designed for speeds of 25 Gbit/s. The SFP replaced the larger GBIC in most applications and has been referred to as a Mini-GBIC by some vendors.

A slightly larger sibling is the four-lane Quad Small Form-factor Pluggable (QSFP). The extra lanes allow for speeds 4 times their corresponding SFP. In 2014, the QSFP28 variant was published allowing speeds up to 100 Gbit/s.

In 2019, the related QSFP56 was standardized doubling the top speeds to 200 Gbit/s with products already selling from major vendors.

There are inexpensive adapters allowing SFP transceivers to be placed in a QSFP port.

Both a SFP-DD, which allows for 100 Gbit/s over two lanes, as well as a QSFP-DD specifications, which allows for 400 Gbit/s over eight lanes, have been published.

These use a formfactor which compatible to their respective predecessors.

An alternative competing solution,

the OSFP (Octal Small Format Pluggable) transceiver is also intended for 400 Gbit/s fiber optic links

between network equipment via 8 × 50 Gbit/s electrical data lanes. 

It is slightly larger version than the QSFP formfactor which is capable of handling larger power outputs. The OSFP standard was initially announced on November 15, 2016. Its proponents say a low cost adapter will allow for QSFP module compatibility.

SFP Types

SFP transceivers are available with a variety of transmitter and receiver specifications, allowing users to select the appropriate transceiver for each link to provide the required optical reach over the available optical fiber type (e.g. multi-mode fiber or single-mode fiber). Transceivers are also designated by their transmission speed. SFP modules are commonly available in several different categories.

NameStandardintroducedStatusSizebackward compatibleMAC block to a PHY chipMediaConnectorMax channelsNotes
100 Mbit/s SFPSFF INF-8074i2001-05-01current113.9 mm2noneMIIFiber, copperLC, RJ451
1 Gbit/s SFPSFF INF-8074i2001-05-01current113.9mm2100 Mbit/s SFP*SGMIIFiber, copperLC, RJ451
1 Gbit/s cSFPcurrent113.9mm2FiberLC2
10 Gbit/s SFP+SFF SFF-84722002-08-01current113.9mm21 Gbit/s SFPXGMIIFiber, copper, DACLC, RJ451
25 Gbit/s SFP28SFF SFF-84022014-09-13current113.9 mm210 Gbit/s SFP+Fiber, DACLC1
50 Gbit/s SFP56current113.9 mm2Fiber, DACLC1
4 Gbit/s QSFPSFF INF-84382006-11-01current156 mm2noneGMII4
40 Gbit/s QSFP+SFF SFF-86832012-04-01current156 mm2noneXGMIIFiber. DACLC, MTP/MPO4CWDM
50 Gbit/s QSFP28SFF SFF-86652014-09-13current156 mm2QSFP+Fiber, DACLC2
100 Gbit/s QSFP28SFF SFF-86652014-09-13current156 mm2noneFiber, DACLC, MTP/MPO-124CWDM
200 Gbit/s QSFP56SFF SFF-86652015-06-29current156 mm2noneFiber, DACLC, MTP/MPO-124
400 Gbit/s QSFP-DDSFF INF-86282016-06-27current156 mm2QSFP+, QSFP28Fiber, DACLC, MTP/MPO-168CWDM

100 Mbit/s SFP

  • Multi-mode fiber, LC connector, with black or Beige color coding
    • SX – 850 nm, for a maximum of 550 m
  • Multi-mode fiber, LC connector, with blue color coding
    • FS  – 1300 nm, for a distance up to 5 km.
    • LFX (name dependent on manufacturer) – 1310 nm, for a distance up to 5 km.
  • Single-mode fiber, LC connector, with blue color coding
    • LX – 1310 nm, for distances up to 10 km
    • EX – 1310 nm, for distances up to 40 km
  • Single-mode fiber, LC connector, with green color coding
    • ZX – 1550 nm, for distances up to 80 km, (depending on fiber path loss)
    • EZX – 1550 nm, for distances up to 160 km (depending on fiber path loss)
  • Single-mode fiber, LC connector, Bi-Directional, with blue and yellow color coding
    • BX (officially BX10) – 1550 nm/1310 nm, Single Fiber Bi-Directional 100 Mbit SFP Transceivers, paired as BX-U (blue) and BX-D (yellow) for uplink and downlink respectively, also for distances up to 10 km. Variations of bidirectional SFPs are also manufactured which higher transmit power versions with link length capabilities up to 40 km.
  • Copper twisted-pair cabling, 8P8C (RJ-45) connector
    • 100BASE-TX – for distances up to 100m.

1 Gbit/s SFP[edit]

  • 1 Gbit/s multi-mode fiber, LC connector, with black or beige extraction lever
    • SX – 850 nm, for a maximum of 550 m at 1.25 Gbit/s (gigabit Ethernet). Other multi-mode SFP applications support even higher rates at shorter distances.
  • 1.25 Gbit/s multi-mode fiber, LC connector, extraction lever colors not standardised
    • SX+/MX/LSX (name dependent on manufacturer) – 1310 nm, for a distance up to 2 km. Not compatible with SX or 100BASE-FX. Based on LX but engineered to work with a multi-mode fiber using a standard multi-mode patch cable rather than a mode-conditioning cable commonly used to adapt LX to multi-mode.
  • 1 to 2.5 Gbit/s single-mode fiber, LC connector, with blue extraction lever
    • LX – 1310 nm, for distances up to 10 km (originally, LX just covered 5 km and LX10 for 10 km followed later)
    • EX – 1310 nm, for distances up to 40 km
    • ZX – 1550 nm, for distances up to 80 km (depending on fiber path loss), with green extraction lever (see GLC-ZX-SM1)
    • EZX – 1550 nm, for distances up to 160 km (depending on fiber path loss)
    • BX (officially BX10) – 1490 nm/1310 nm, Single Fiber Bi-Directional Gigabit SFP Transceivers, paired as BX-U and BX-D for uplink and downlink respectively, also for distances up to 10 km. Variations of bidirectional SFPs are also manufactured which use 1550 nm in one direction, and higher transmit power versions with link length capabilities up to 80 km.
    • 1550 nm 40 km (XD), 80 km (ZX), 120 km (EX or EZX)
    • SFSW – single-fiber single-wavelength transceivers, for bi-directional traffic on a single fiber. Coupled with CWDM, these double the traffic density of fiber links.
    • Coarse wavelength-division multiplexing (CWDM) and dense wavelength-division multiplexing (DWDM) transceivers at various wavelengths achieving various maximum distances. CWDM and DWDM transceivers usually support link distances of 40 km, 80 km and 120 km.
  • 1 Gbit/s for copper twisted-pair cabling, 8P8C (RJ-45) connector
    • 1000BASE-T – these modules incorporate significant interface circuitry for Physical Coding Sublayer recoding and can be used only for gigabit Ethernet because of the specific line code. They are not compatible with (or rather: do not have equivalents for) Fibre Channel or SONET. Unlike non-SFP, copper 1000BASE-T ports integrated into most routers and switches, 1000BASE-T SFPs usually cannot operate at 100BASE-TX speeds.
  • 100 Mbit/s copper and optical – some vendors have shipped 100 Mbit/s limited SFPs for fiber-to-the-home applications and drop-in replacement of legacy 100BASE-FX circuits. These are relatively uncommon and can be easily confused with 100 Mbit/s SFPs.
  • Although it is not mentioned in any official specification document the maximum data rate of the original SFP standard is 5 Gbit/s. This was eventually used by both 4GFC Fibre Channel and the DDR Infiniband especially in its four lane QSFP form.
  • In recent years, SFP transceivers have been created that will allow 2.5 Gbit/s and 5 Gbit/s Ethernet speeds with SFPs with 2.5GBASE-T and 5GBASE-T.

10 Gbit/s SFP+

A 10 Gigabit Ethernet XFP transceiver and a SFP+ transceiver side by side.

The SFP+ (enhanced small form-factor pluggable) is an enhanced version of the SFP that supports data rates up to 16 Gbit/s. The SFP+ specification was first published on May 9, 2006, and version 4.1 published on July 6, 2009. SFP+ supports 8 Gbit/s Fibre Channel, 10 Gigabit Ethernet and Optical Transport Network standard OTU2. It is a popular industry format supported by many network component vendors. Although the SFP+ standard does not include mention of 16 Gbit/s Fibre Channel, it can be used at this speed.

SFP+ also introduces direct attach for connecting two SFP+ ports without dedicated transceivers. Direct attach cables (DAC) exist in passive (up to 7 m), active (up to 15 m), and active optical (AOC, up to 100 m) variants.

10 Gbit/s SFP+ modules are exactly the same dimensions as regular SFPs, allowing the equipment manufacturer to re-use existing physical designs for 24 and 48-port switches and modular line cards. In comparison to earlier XENPAK or XFP modules, SFP+ modules leave more circuitry to be implemented on the host board instead of inside the module. Through the use of an active electronic adapter, SFP+ modules may be used in older equipment with XENPAK ports [30] and X2 ports.

SFP+ modules can be described as limiting or linear types; this describes the functionality of the inbuilt electronics. Limiting SFP+ modules include a signal amplifier to re-shape the (degraded) received signal whereas linear ones do not. Linear modules are mainly used with the low bandwidth standards such as 10GBASE-LRM; otherwise, limiting modules are preferred.

25 Gbit/s SFP28

SFP28 is a 25 Gbit/s interface which evolved from the 100 Gigabit Ethernet interface which is typically implemented with 4 by 25 Gbit/s data lanes. Identical in mechanical dimensions to SFP and SFP+, SFP28 implements one 28 Gbit/s lane accommodating 25 Gbit/s of data with encoding overhead.

SFP28 modules exist supporting single- or multi-mode fiber connections, active optical cable and direct attach copper.


The compact small form-factor pluggable (cSFP) is a version of SFP with the same mechanical form factor allowing two independent bidirectional channels per port. It is used primarily to increase port density and decrease fiber usage per port.


The small form-factor pluggable double density (SFP-DD) multi source agreement is a new standard for doubling port density. According to the SFD-DD MSA website: “Network equipment based on the SFP-DD will support legacy SFP modules and cables, and new double density products.”

QSFP types

QSFP+ 40 Gb Transceiver

Quad Small Form-factor Pluggable (QSFP) transceivers are available with a variety of transmitter and receiver types, allowing users to select the appropriate transceiver for each link to provide the required optical reach over multi-mode or single-mode fiber.

4 Gbit/s QSFP

The original QSFP document specified four channels carrying Gigabit Ethernet, 4GFC (FiberChannel), or DDR InfiniBand.

40 Gbit/s QSFP+

QSFP+ is an evolution of QSFP to support four 10 Gbit/s channels carrying 10 Gigabit Ethernet, 10GFC FiberChannel, or QDR InfiniBand. The 4 channels can also be combined into a single 40 Gigabit Ethernet link.

50 Gbit/s QSFP14

The QSFP14 standard is designed to carry FDR InfiniBand, SAS-3. or 16G Fibre Channel

100 Gbit/s QSFP28

The QSFP28 standard is designed to carry 100 Gigabit Ethernet, EDR InfiniBand, or 32G Fibre Channel. Sometimes this transceiver type is also referred to as “QSFP100” or “100G QSFP” for sake of simplicity.

200 Gbit/s QSFP56

QSFP56 is designed to carry 200 Gigabit Ethernet, HDR InfiniBand, or 64G Fibre Channel. The biggest enhancement is that QSFP56 uses four-level pulse-amplitude modulation (PAM-4) instead of non-return-to-zero (NRZ). It uses the same physical specifications as QSFP28 (SFF-8665), with electrical specifications from SFF-8024 and revision 2.10a of SFF-8636. Sometimes this transceiver type is referred to as “200G QSFP” for sake of simplicity.


Switch and router manufacturers implementing QSFP+ ports in their products frequently allow for the use of a single QSFP+ port as four independent 10 gigabit ethernet connections, greatly increasing port density. For example, a typical 24-port QSFP+ 1U switch would be able to service 96x10GbE connections. There also exist fanout cables to adapt a single QSFP28 port to four independent 25 gigabit ethernet SFP28 ports (QSFP28-to-4×SFP28) as well as cables to adapt a single QSFP56 port to four independent 50 gigabit ethernet SFP56 ports (QSFP56-to-4×QSFP56).


Ethernet switch with two empty SFP slots (lower left)

SFP sockets are found in Ethernet switches, routers, firewalls and network interface cards. They are used in Fibre Channel host adapters and storage equipment. Because of their low cost, low profile, and ability to provide a connection to different types of optical fiber, SFP provides such equipment with enhanced flexibility.


The SFP transceiver is not standardized by any official standards body, but rather is specified by a multi-source agreement (MSA) among competing manufacturers. The SFP was designed after the GBIC interface, and allows greater port density (number of transceivers per given area) than the GBIC, which is why SFP is also known as mini-GBIC.

However, as a practical matter, some networking equipment manufacturers engage in vendor lock-in practices whereby they deliberately break compatibility with “generic” SFPs by adding a check in the device’s firmware that will enable only the vendor’s own modules. Third-party SFP manufacturers have introduced SFPs with EEPROMs which may be programmed to match any vendor ID.

Color coding of SFP

Color coding of SFP

blackINF-8074Multimode850 nm
BeigeINF-8074Multimode850 nm
blackINF-8074Multimode1310 nm
BlueINF-8074Singlemode1310 nm
(non SFF)
Singlemode1310 nmUsed on 25GBASE-ER
(non SFF)
Singlemode1550 nmUsed on 100BASE-ZE
(non SFF)
Singlemode1550 nmUsed on 10GBASE-ER
(non SFF)
Singlemode1550 nmUsed on 10GBASE-ZR

Color coding of CWDM SFP

Grey1270 nm
Grey1290 nm
Grey1310 nm
Violet1330 nm
Blue1350 nm
Green1370 nm
Yellow1390 nm
Orange1410 nm
Red1430 nm
Brown1450 nm
Grey1470 nm
Violet1490 nm
Blue1510 nm
Green1530 nm
Yellow1550 nm
Orange1570 nm
Red1590 nm
Brown1610 nm

Color coding of BiDi SFP

NameStandardSide A Color TXSide A wavelength TXSide B Color TXSide V wavelength TXNotes
1000BASE-BXBlue1310 nmPurple1490 nm
1000BASE-BXBlue1310 nmYellow1550 nm
Blue1270 nmRed1330 nm
10GBASE-BXWhite1490 nmWhite1550 nm

Color coding of QSFP

BeigeINF-8438850 nmNo
BlueINF-84381310 nmNo
WhiteINF-84381550 nmNo


Front view of SFP module with integrated LC connector. The blue extraction lever indicates the module is designed for use with single-mode optical fiber.

OC-3 SFP internal. The top, metal canister is the transmitting laser diode, the bottom, plastic canister is the receiving photo diode.

The SFP transceiver contains a printed circuit board with an edge connector with 20 pads that mate on the rear with the SFP electrical connector in the host system. The QSFP has 38 pads including 4 high-speed transmit data pairs and 4 high-speed receive data pairs.

Mechanical dimensions

Side view of SFP module. Depth, the longest dimension, is 56.5 mm (2.22 in).

The physical dimensions of the SFP transceiver (and its subsequent faster variants) are narrower than the later QSFP counterparts, which allows for SFP transceivers to be placed in QSFP ports via an inexpensive adapter. Both are smaller than the XFP transceiver.


EEPROM information

The SFP MSA defines a 256-byte memory map into an EEPROM describing the transceiver’s capabilities, standard interfaces, manufacturer, and other information, which is accessible over a serial I²C interface at the 8-bit address 1010000X (A0h).

Digital diagnostics monitoring

Modern optical SFP transceivers support standard digital diagnostics monitoring (DDM) functions. This feature is also known as digital optical monitoring (DOM). This capability allows monitoring of the SFP operating parameters in real time. Paramters include optical output power, optical input power, temperature, laser bias current, and transceiver supply voltage. In network equipment, this information is typically made available via Simple Network Management Protocol (SNMP). A DDM interface allows end users to display diagnostics data and alarms for optical fiber transceivers and can be used to diagnose why a transceiver is not working.

Get A Quick Quote

We will respond within 12 hours, please pay attention to the email with the suffix “”

Also, you can go to the Contact Page, which provides a more detailed form.